
TertiumBleScan and TertiumBleScanSwift (TxRx) APP for iOS operating
system

1. APP purpose and functionalities

The TertiumBleScan and TertiumBleScanSwift APPs for iOS Operating System have been
released by TERTIUM Technology with a “MIT License”, which is an open source license,
with the specific purpose of simplifying, for its partners and clients, the development of
APPs that interact with TxRx Bluetooth Low Energy (BLE) devices by TERTIUM Technology.
The two APP have the same functionalities and display the same user interface, they differ
just for the programming language used for their development: Objective-C and Swift,
respectively.

TxRx devices by TERTIUM Technology expose a BLE service with two main characteristics –
named respectively “Tx” e “Rx” – simulating a bidirectional ASCII stream. With this stream
the device uses “Rx” characteristic to receive commands from a central device, usually an
iPhone smartphone or an iPad tablet with iOS operating system; it uses the “Tx”
characteristic, instead, to send the corresponding replies.

The APP offers functionalities for showing all the detectable BLE devices and for connecting
to one of those devices (if it is a “TxRx” one) and a CLI; with this textual interface the users
are allowed to write the commands they want to issue to the device and to read the
received replies.

The core of the TertiumBleScan e TertiumBleScanSwift APP source code, named
“TxRxLibrary”, has been written and documented in order to be reused in each and every
APP interacting with TxRx BLE devices by TERTIUM Technology; the GUI is meant as a useful
example of “TxRxLibrary”1 module functionalities.

1 An APP for a specific application has obviously to manage the commands and text replies documented by TERTIUM
Technology for the specific TxRx BLE device used.

Rev. 1.2 11

2. Architecture of the source code of TertiumBleScan e TertiumBleScanSwift APPs

The source code of TertiumBleScan e TertiumBleScanSwift APP is entirely included in the
“TxRxLibrary” library project, both for the Objective-C version and for the Swift one. The
Core class, contained in the “Core” project folder, implements a singleton type proxy that
interfaces the library with the remaining part of the code; this code implements the user
interfaces of the two APPs and a delegate object transforming into messages to be shown
every asynchronous notifications generated by the code of the library and reflected by the
Core class (receptions of replies from the device, timeout events, errors, …). The usage of
the Core class, though, is not mandatory for using the library itself: the developer can
choose a different management pattern for the “TxRxLibrary” delegates.

3. Functionalities of the Core classes for the TertiumBleScan e TertiumBleScanSwift APPs

For the Objective-C TertiumBleScan APP, the Core class contains the following methods:

Method Functionality
getCore returns the singleton instance of the Core class
isScanning returns true if the BLE devices scanning phase is active, false

otherwise
startScan starts the scanning phase for the BLE devices: every single device

found yields a notification, even if it is not a TxRx device
stopScan stops the scanning phase for the BLE devices
getScannedDevices returns the list of the BLE devices found in the scanning phase

(includes also the non TxRx devices)
connectDevice connects the specified device between the ones found in the

scanning phase: you can have a connection only with TxRx devices
sendData sends a string of data to the connected device: the reception of the

response yields a notification
disconnectDevice disconnects the specified device

Rev. 1.2 22

Moreover, the Objective-C Core class reflects the following notifications:

Notification Description
TxRxScanBegan start of the scanning phase
TxRxScanError error in the scanning phase
TxRxScanEnded end of the scanning phase
TxRxDeviceError error on the device
TxRxDeviceFound BLE device found
TxRxDeviceConnectError connection error with the device2 (includes timeout error)
TxRxDeviceConnected connection with the device done
TxRxDeviceReady the TxRx type device has been correctly detected: the device is

ready to receive commands
TxRxDeviceDisconnected disconnection from device done
TxRxDeviceDataSent data correctly sent to device
TxRxDeviceDataSendError error in data sending to the device
TxRxDeviceDataSendTimeout data sending to the device timed out
TxRxDeviceDataReceived data received from device
TxRxDeviceDataReceiveError error receiving data from the device (includes timeout error)
TxRxDeviceInternalError error in device management

Objective-C Core class does not intercept the following utility methods exposed by
TxRxManager class:

Method Functionality
deviceWithIndexedName returns a reference to a device found by indexed-name (device

name followed by the symbol “_” and by the position of the device
itself in the list of the devices found in the scanning phase)3

getDeviceIndexedName returns the indexed-name of specified device
setTimeOutDefaults set the default timeout time values
getTimeOutValue return the specified timeout time value (connection, reception of

the first fragment of response data, reception of successive
fragments of response data, command data transmission)

setTimeOutValue set the specified timeout time value (connection, reception of the
first fragment of response data, reception of successive fragments
of response data, command data transmission)

deviceFromDeviceName returns a reference to a device found by device name (device name
in the list of the devices found in the scanning phase)

getDeviceName returns the device name

2 Error yielded even in case of non TxRx type device.

3 iOS operating system APIs do not allow you to get the BLE device MAC address, so using the indexed-name allows you
to get a unique identifier even in the case where two found BLE device names are the same.

Rev. 1.2 33

For the TertiumBleScanSwift Swift APP, the Core class includes the following methods:

Method Functionality
getCore returns the singleton instance of the Core class
isScanning returns true if the BLE devices scanning phase is active, false

otherwise
startScan starts the scanning phase for the BLE devices: every single device

found yields a notification, even if it is not a TxRx device
stopScan stops the scanning phase for the BLE devices
getScannedDevices returns the list of the BLE devices found in the scanning phase

(includes also the non TxRx devices)
connectDevice connects the specified device between the ones found in the

scanning phase: you can have a connection only with TxRx devices
sendData sends a string of data to the connected device: the reception of the

response yields a notification
disconnectDevice disconnects the specified device

Moreover, the Swift Core class reflects the following notifications:

Notification Description
TxRxScanBegan start of the scanning phase
TxRxScanError error in the scanning phase
TxRxScanEnded end of the scanning phase
TxRxDeviceError error on the device
TxRxDeviceFound BLE device found
TxRxDeviceConnectError connection error with the device4 (includes timeout error)
TxRxDeviceConnected connection with the device done
TxRxDeviceReady the TxRx type device has been correctly detected: the device is

ready to receive commands
TxRxDeviceDisconnected disconnection from device done
TxRxDeviceDataSent data correctly sent to device
TxRxDeviceDataSendError error in data sending to the device
TxRxDeviceDataSendTimeout data sending to the device timed out
TxRxDeviceDataReceived data received from device
TxRxDeviceDataReceiveError error receiving data from the device (includes timeout error)
TxRxDeviceInternalError error in device management

4 Error yielded even in case of non TxRx type device.

Rev. 1.2 44

The Swift Core class does not intercepts the following utility methods exposed by the
TxRxManager class:

Method Functionality
deviceWithIndexedName returns a reference to a device found by indexed-name (device

name followed by the symbol “_” and by the position of the device
itself in the list of the devices found in the scanning phase)5

getDeviceIndexedName returns the indexed-name of specified device
setTimeOutDefaults set the default timeout time values
getTimeOutValue return the specified timeout time value (connection, reception of

the first fragment of response data, reception of successive
fragments of response data, command data transmission)

setTimeOutValue set the specified timeout time value (connection, reception of the
first fragment of response data, reception of successive fragments
of response data, command data transmission)

deviceFromDeviceName returns a reference to a device found by device name (device name
in the list of the devices found in the scanning phase)

getDeviceName returns the device name

5 iOS operating system APIs do not allow you to get the BLE device MAC address, so using the indexed-name allows you
to get a unique identifier even if two found BLE device names are the same.

Rev. 1.2 55

4. Communication management algorithm with BLE TxRx devices

First of all, you have to establish a connection by invoking the connectDevice method of the
Core class and receiving positive confirmation by the generation of the notifications
TxRxDeviceConnected and TxRxDeviceReady, which guarantee that the BLE device is of type
TxRx (in case of connection failure, the TxRxDeviceConnectError notification is yielded).

Once the connection has been made, the communication between the iPhone smartphone
or the iPad tablet and the BLE TxRx device is carried out following the following algorithm:

 invocation of sendData method from Core class – whose parameter is the string
containing the text command to be sent to the BLE device – writes the “Rx”
characteristic of the TxRx service: if the string to be written has a length greater than
the declared size for the characteristic, then multiple sending of fragments of the string
are made, each of length equal or inferior to the dimension of the characteristic6;

 the generation of the TxRxDeviceDataSent notification confirms the correct writing of
the command in the "Rx" characteristic; in case of error or timeout the
TxRxDeviceSendError or TxRxDeviceSendTimeout call-back methods are invoked
respectively (the timeout length is a configurable parameter);

 with the sending of the last fragment of the command string (coinciding with the first
in the case of a string of length equal to or less than the size of the "Rx" characteristic),
a timer initialized with the timeout time for the start of the reply is started;

 the reception of the possible reply to the command sent is received by successive BLE
notifications of changing of the content of the "Tx" characteristic: the string fragments
notified in succession are recomposed in a single response string; if no notification is
yielded before the timer is reset, the TxRxDeviceReceiveError notification is yielded;

 after the reception of every single fragment of the response string, a timer initialized
with the timeout time for the end of the reply is started or restarted: if the timer is
reset, the reading of the answer is considered finished and the string that contains is
provided as a parameter of the TxRxDeviceDataReceived notification.

With the exception of starting the timer for the timeout, the code of a command for writing
and the code of a command for reading a reply are completely asynchronous: any
unsolicited variation of the "Tx" characteristic by the BLE device generates the reception of
the string in the same way as receiving a reply to a command.

6 The BLE protocol involves the transmission of packets with a maximum payload of 20 bytes: if the length of the "Rx"
characteristic is greater than 20, the transmission of the value to be written in the characteristic is divided into packets
each with payload equal to or less than 20 in a way that is transparent for the Java code that invokes the Android BLE
API.

Rev. 1.2 66

 5. Documentation of the TertiumBleScan and TertiumBleScanSwift APP library code

The Objective-C and Swift code of the classes included in the library for the TertiumBleScan
and TertiumBleScanSwift APP has been commented with the style provided for the Apple
development environment for iOS operating system APP (Quick-help).

Rev. 1.2 77

