
TERTIUM Technology's RFID readers management APP

BLE RFID readers by TERTIUM Technology

TERTIUM Technology manufactures and markets, under the BlueBerry name, some HF (ISO)
and UHF (EPC) portable RFID reader devices with a BLE (Bluetooth Low Energy) interface that can
be used by a smartphone or a tablet.

TERTIUM Technology customers who purchase BlueBerry RFID readers, usually develop
management APPs for the most popular operating systems for smartphones and tablets that
support the BLE communication standard, in particular Google Android and Apple iOS.

Rev. 1.2 11

The low-level management native libraries for TERTIUM Technology BLE devices

TERTIUM Technology has developed 3 native libraries called TxRxLib for the low level
management of its devices equipped with BLE interface:

 library for Android operating system in Java language;

 library for iOS operating system in Objective-C language;

 library for iOS operating system in Swift language.

The TxRxLib libraries, in addition to the BLE devices' scanning and detection functions, expose an
API for sending commands and receiving replies in the form of strings composed of ASCII
characters; as a result of the fact that all BLE devices made by TERTIUM Technology expose a
protocol of commands and responses using two characteristics called Tx and Rx respectively, the
low-level libraries TxRxLib allow you to manage any device with BLE interface made by TERTIUM
Technology, not only BlueBerry1 HF/UHF RFID readers.

TERTIUM Technology's low-level management libraries for BLE devices are documented according
to the standards set by the IDEs used for development.

The test apps for the low-level native libraries of TERTIUM Technology's BLE devices

In order to test the native libraries of low-level management of their devices equipped with BLE
interface, TERTIUM Technology has created three APPs:

 Native APP for Android operating system implemented in Java language;

 Native APP for iOS operating system implemented in Objective-C language;

 Native APP for iOS operating system implemented in Swift language.

All the test apps expose a GUI consisting of 2 views:

 one view with the list of detected BLE devices and possibility of selection and connection to
a specific device;

 one view with the list of commands sent to a TERTIUM Technology BLE device, the related
replies and the error conditions generated, input control for typing and sending a
command string.

The native test APPs also expose on the Wi-Fi network a TCP socket to which you can connect to
send command strings to a connected BLE device and receive the related replies and generated

1 In particular, the TxRxLib low-level native libraries allow the management of the so-called "active" devices: BLE
sensors and gateway for accessing wireless sensor networks.

Rev. 1.2 22

error conditions.

The figure below illustrates the overall software architecture of the native libraries and test apps
for low-level management of TERTIUM Technology BLE devices:

Native test APP
(Java)

Native test APP
(Objective-C)

Native test APP
(Swift)

native Tx/Rx library
(Java)

native Tx/Rx library
(Objective-C)

native Tx/Rx library
(Swift)

Android operating system iOS operating system

The functionalities of the TxRxLib libraries and the related native test APPs are described in the
following attached documents:

 “TERTIUM_TxRxApp for Android operating system”

 “TERTIUM_TxRxApp for iOS operating system”

Rev. 1.2 33

TERTIUM Technology's high-level management API for RFID readers

For HF/UHF BlueBerry BLE RFID readers by TERTIUM Technology has been designed and
implemented a high level asynchronous management API, both for Android operating system and
for iOS operating system. This API encapsulates the features of the low level TxRxLib library
based on the following classes:

 TxRxScanner – exposes the methods for BLE devices scanning

TxRxScanner

-scanCallback: TxRxScanCallback

+stopScan()
+isScanning(): boolean

+TxRxScanner(scanCallback: TxRxScanCallback)
+startScan()

+setScanTimeout(timeout: integer)
+getScanTimeout(): integer

 TxRxScanResult – encapsulates an object, which is an instance of the BluetoothDevice class,
representing a detected device plus other information connected to the detection (radio
signal RSSI, beacon transmission power, beacon advertisement content, …)

TxRxScanResult

-device: BluetoothDevice

+getRssi(): integer
+getScanRecord(): byte[]

+TxRxScanResult(device: BluetoothDevice, RSSI: integer,
scanRecord: byte[], txPower: integer)
+getBluetoothDevice(): BluetoothDevice

+getTxPower(): integer

-RSSI: integer
-scanRecord: byte[]
-txPower: integer



Rev. 1.2 44

 PassiveReader – exposes the methods for HF/UHF RFID reader management, yielding an
abstraction level which is independent from the protocol command strings

PassiveReader

-init(inventory_listener: AbstractInventoryListener, reader_listener: AbstractReaderListener, response_listener: AbstractResponseListener)

+doInventory()

+sound(frequency: integer, step: integer, duration: integer, interval: integer, repetition: integer)

+setInventoryMode(mode: enumeration)
+setInventoryType(standard: enumeration)

+light(led_status: boolean, led_blink: integer)

+setShutdownTime(time: integer)
+getShutdownTime()

+getBatteryStatus()
+getFirmwareVersion()

+setInvenotoryParameters(feedback: enumeration, timeout: integer, interval: integer)
+setRFpower(level: integer, mode: enumeration)
+getRFpower()

+getBatteryLevel()
+setRFforISO15693tunnel(delay: integer, timeout: integer)
+getRFforISO15693tunnel()

+isHF(): boolean
+isUHF(): boolean

+setISO156893optionBits(option_bits: enumeration)
+getISO15693optionBits()

+getISO15693extensionFlag()
+setISO15693extensionFlag(flag: boolean, permanent: boolean)

+setISO15693bitrate(bitrate: enumeration, permanent: boolean)
+getISO15693bitrate()
+setEPCfrequency(frequency: enumeration)
+getEPCfrequency()

+isAvailable(reader_adress: string): boolean

+testAvailability()

-PassiveReader()

+getInstance(inventory_listener: AbstractInventoryListener, reader_listener: AbstractReaderListener, response_listener: AbstractResponseListener)
+connect(reader_address: string)
+disconnect()

+ISO15693tunnel(command: byte[])
+ISO15693encryptedTunnel(flag: byte, command: byte[])

+close()

Singleton



Rev. 1.2 55

 Tag – stands for a RFID tag; derived classes such as ISO15693_tag, ISO14443_tag or
EPC_tag expose methods for reading, writing and managing specific type tags; in this
situation too, they yield an abstraction level that is independent from the protocol command
strings

Tag

-ID: byte[]

+getID(): byte[]

ISO15693_tag

+read(address: integer, blocks: integer)

EPC_tag

+getPC(): integer

ISO14443A_tag

+ISO14443A_tag(ID: byte[],
 passive_reader: PassiveReader)

+writeID(ID: byte[], NSI: integer)

+write(address: integer, data: byte[])
+lock(address: integer, blocks: integer)

+read(address: integer, blocks: integer)
+write(address: integer, data: byte[],
 password: byte[])
+lock(lock_type: enumeration,
 password: byte[])

+setTimeout(timeout: integer)
+getTimeout(): integer

+kill(password: byte[])

+Tag(ID: byte[], passive_reader: PassiveReader)
+setReverseID(reverseID: boolean)

-timeout: integer

+ISO15693_tag(ID: byte[],
 passive_reader: PassiveReader)

-PC: integer

+EPC_tag(PC: integer, ID: byte[],
 passive_reader: PassiveReader)

+readTID(length: integer, password: byte[])

-passive_reader: PassiveReader

+writeKillPassword(kill_password: byte[],
 password: byte[])
+writeAccessPassword(access_password: byte[],
 password: byte[])

+getExtendedID(): byte[]

+EPC_tag(RSSI: integer, PC: integer, ID: byte[],
 passive_reader: PassiveReader)

-RSSI: integer

+getRSSI(): integer

-reverseID: boolean

and on the following interfaces:

 TxRxScanCallback – defines the callback methods for BLE devices detection

TxRxScanCallback

+onDeviceFound(scanResult: TxRxScanResult)
+afterStopScan()

Rev. 1.2 66

 AbstractReaderListener – defines the callback methods related to the methods of
PassiveReader class

AbstractReaderListener

+resultEvent(command: enumeration, error: enumeration)
+batteryStatusEvent(status: enumeration)
+firmwareVersionEvent(major_number: integer, minor_number: integer)
+shutdownTimeEvent(time: integer)
+RFpowerEvent(level: enumeration, mode: enumeration)
+batteryLevelEvent(level: real)
+RFforISO15693tunnelEvent(delay: integer, timeout: integer)
+ISO15693optionBitsEvent(option_bits: enumeration)
+ISO15693extensionFlagEvent(flag: boolean, permanent: boolean)
+ISO15693bitrateEvent(bitrate: enumeration, permanent: boolean)

+EPCfrequencyEvent(frequency: enumeration)

+availabilityEvent(available: boolean)

+tunnelEvent(data: byte[])

+connectionFailedEvent(error: enumeration)
+connectionSuccessEvent()
+disconnectionSuccessEvent()

 AbstractInventoryListener – defines the callback method for RFID tag detection

AbstractInventoryListener

+inventoryEvent(tag: Tag)

 AbstractResponseListener - defines the callback methods related to the methods of classes
derived from Tag class

AbstractResponseListener

+readEvent(tag_ID: byte[], error: enumeration, data: byte[])
+writeEvent(tag_ID: byte[], error: enumeration)
+lockEvent(tag_ID: byte[], error: enumeration)
+killEvent(tag_ID: byte[], error: enumeration)

+writeIDevent(tag_ID: byte[], error: enumeration)
+writePasswordEvent(tag_ID: byte[], error: enumeration)
+readTIDevent(tag_ID: byte[], error: enumeration, TID: byte[])

Rev. 1.2 77

If you choose to implement the TxRxScanCallback interface with the ScanCallback class, exposing
methods for the management of the collection of detected RFID tags

ScanCallback

+onDeviceFound(scanResult: TxRxScanResult)
+ScanCallback()
-deviceList: TxRxScanResult[]

+getScanResults(): TxRxScanResult[]

+reset()
+getResultsNumber(): integer

+afterStopScan()

user-defined

and to implement the AbstractInventoryListener interface with the InventoryListener class,
exposing methods for the management of the collection of detected RFID tags,

InventoryListener

-tags: Tag[]

+inventoryEvent(tag: Tag)
+InventoryListener()

+getTags(): Tag[]

+reset()
+getTagsNumber(): integer

user-defined

Rev. 1.2 88

the typical interaction between an APP and the APIs starts with a scan for a BLE RFID reader and it
is documented by the following UML sequence diagram:

APP :ScanCallback :TxRxScanner

ScanCallback()

TxRxScanner()

startScan()

stopScan()

getResultsNumber()

getScanResults()

:Bluetooth
Device

:TxRxScanResult

getName()

getAddress()

getBluetoothDevice()

If you choose to implement the AbstractReaderListener interface with the ReaderListener class

ReaderListener

+resultEvent(command: enumeration, error: enumeration)
+batteryStatusEvent(status: enumeration)
+firmwareVersionEvent(major_number: integer, minor_number: integer)
+shutdownTimeEvent(time: integer)
+RFpowerEvent(level: integer, mode: enumeration)
+batteryLevelEvent(level: real)
+RFforISO15693tunnelEvent(delay: integer, timeout: integer)
+ISO15693optionBitsEvent(option_bits: enumeration)
+ISO15693extensionFlagEvent(flag: boolean, permanent: boolean)
+ISO15693bitrateEvent(bitrate: enumeration, permanent: boolean)
+EPCfrequencyEvent(frequency: enumeration)

+ReaderListener()

+availabilityEvent(availibility: boolean)

+tunnelEvent(data: byte[])

+connectionFailedEvent(error: enumeration)
+connectionSuccessEvent()
+disconnectionSuccessEvent()

user-defined

Rev. 1.2 99

and the AbstractResponseListener class with the ResponseListener class,

ResponseListener

+readEvent(tag_ID: byte[], error: enumeration, data: byte[])
+writeEvent(tag_ID: byte[], error: enumeration)
+lockEvent(tag_ID: byte[], error: enumeration)
+killEvent(tag_ID: byte[], error: enumeration)

+writeIDevent(tag_ID: byte[], error: enumeration)
+ResponseListener()

+readTIDevent(tag_ID: byte[], error: enumeration, TID: byte[])
+writePasswordEvent(tag_ID: byte[], error.enumeration)

user-defined

the typical interaction between an APP and the APIs continues with the detection of RFID tags
(inventory) and the execution of operations on one of them, both phases documented in the
following UML sequence diagram:

:Reader
Listener:PassiveReader :Inventory

ListenerAPP

getInstance()

doInventory()

:Tag :Response
Listener

Tag()

writeEvent()

readEvent()

ReaderListener()

inventoryEvent()

getTags()

ResponseListener()

setTimeout()

write()

read()

InventoryListener()

resultEvent()

setInventoryParameters()

:Tag[]

connect()

isAvailable()

disconnect()

reset()

Rev. 1.2 1010

Le librerie native di implementazione delle API di gestione ad alto livello dei lettori RFID BLE di
TERTIUM Technology

TERTIUM Technology has developed three native libraries (RfidPassiveApiLib) implementing
the high level management APIs for its RFID readers equipped with a BLE interface:

 library for Android operating system implemented in Java language;

 library for iOS operating system implemented in Objective-C language;

 library for iOS operating system implemented in Swift language.

The implementation libraries of TERTIUM Technology's high-level RFID reader management APIs
are documented according to the standards set by the IDEs used for development; in particular for
the library in Java language the documentation was generated in HTML format according to the
JavaDoc standard.

The test apps for the high-level native libraries of TERTIUM Technology's BLE devices

In order to test the native libraries of high-level management of their devices equipped with BLE
interface, TERTIUM Technology has created three APPs:

 Native APP for Android operating system implemented in Java language;

 Native APP for iOS operating system implemented in Objective-C language;

 Native APP for iOS operating system implemented in Swift language.

All the test apps expose a GUI consisting of 2 views:

 a view with the list of detected BLE devices and with the possibility of selection and
connection to a specific device;

 other view, divided in three sections:

 display of the outcome of the invocation of the API methods for the initialization of the
RFID reader carried out at the time of connection,

 display of the outcome of the invocation of the API methods for querying the status of
the RFID reader carried out periodically,

Rev. 1.2 1111

 a control for selection2 and invocation with predefined parameters of an RFID reader
management API; a control for the interaction with a detected tag and the display of
its outcome (includes the display of the IDs of the tags detected following the selection
of the doInventory method of the API).

The figure below illustrates the overall software architecture of the native libraries and API test
APPs for high-level management of TERTIUM Technology BLE devices:

Native test APP
(Java)

Native test APP
(Objective-C)

Native test APP
(Swift)

Native API library
(Java)

Native API library
(Objective-C)

Native API library
(Swift)

Native Tx/Rx library
(Java)

Native Tx/Rx library
(Objective-C)

Native Tx/Rx library
(Swift)

Android operating system iOS operating system

2 you can choose among a meaningful subset of the API methods.

Rev. 1.2 1212

The TERTIUM Technology RFID reader library/APP code repository

The code of the libraries and of the RFID reader management APPs produced by TERTIUM
Technology is released with an open-source MIT license (opensource.org/licenses/MIT) that allows
its use in both open-source and proprietary software projects, without the need to redistribute
the source code.

The source code of the libraries and management APPs is distributed on the github.com platform
in the following TERTIUM Technology repositories (github.com/tertiumtechnology/):

Library/APP Repository
TxRxLib native library for Java/Android tt-txrx-lib-android

TxRxLib native library for Objective-C/iOS tt-txrx-lib-ios-objc

TxRxLib native library for Swift/iOS tt-txrx-lib-ios-swift

TxRxLIB native test APP for Java/Android tt-txrx-demoapp-android

TxRxLib native test APP for Objective-C/iOS tt-txrx-demoapp-ios-objc

TxRxLib native test APP for Swift/iOS tt-txrx-demoapp-ios-swift

RfidPassiveApiLib native library for Java/Android tt-rfid-passive-api-lib-android

RfidPassiveApiLib native library for Objective-
C/iOS

tt-rfid-passive-api-lib-ios-objc

RfidPassiveApiLib native library for Swift/iOS tt-rfid-passive-api-lib-ios-swift

RfidPassiveApiLib native test APP for Java/Android tt-rfid-passive-api-testapp-android

RfidPassiveApiLib native test APP for Objective-
C/iOS

tt-rfid-passive-api-testapp-ios-objc

RfidPassiveApiLib native test APP for Swift/iOS tt-rfid-passive-api-testapp-ios-
swift

Rev. 1.2 1313

